

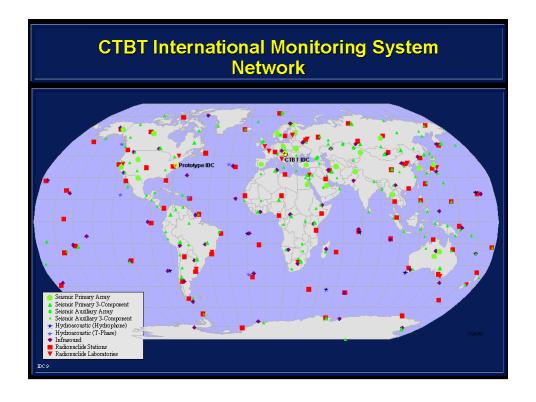
CTBT & Communication Infrastructure to Support a Secure, Scalable, and Robust SensorNet

Deborah Agarwal

Distributed Systems Department Lawrence Berkeley National Laboratory

The Comprehensive Nuclear Test-Ban Treaty

- Bans any nuclear weapon test explosion or any other nuclear explosion
- Drafted at the Conference on Disarmament in Geneva and adopted on September 10, 1996
- Treaty verification requires an ability to detect if a test has been conducted



Treaty Verification - Monitoring Compliance

- International Monitoring System (IMS) 321 stations and 16 radionuclide laboratories
 - Seismic
 - Hydroacoustic
 - Infrasound
 - Radionuclide
- Global Communications Infrastructure
- International Data Center (IDC)
- On-site inspections

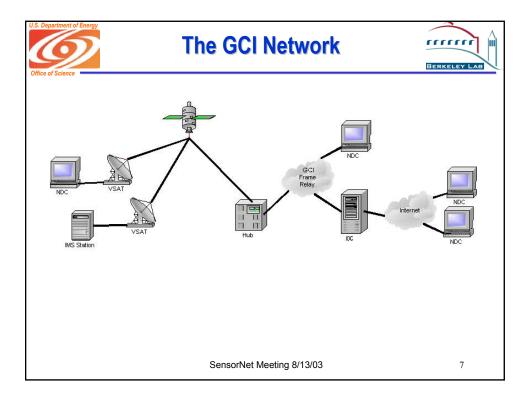
SensorNet Meeting 8/13/03

The International Data Centre (IDC)

- Collect data from all the sensors
 - Primary/continuous
 - Auxiliary/on demand
- Analyze data
 - automated detection of events
 - reviewed event bulletins
 - determine location of event
- Archive data centrally
- Provide data to all States that request the data

SensorNet Meeting 8/13/03

5



The Global Communications Infrastructure (GCI)

- Private network
- Built and run by a contractor
- Contract managed by the IDC
- Stations connected by VSAT (Very Small Aperture Terminal earth station)
- 5 satellites with 5 satellite hubs
- Frame relay links connect the hubs to the IDC (land lines)
- Recently added some VPN links over the Internet
- Data distribution using Internet and VSAT
- Global coverage including near the poles

SensorNet Meeting 8/13/03

Continuous Data Protocol

CD-1.0 implemented by SAIC

- Push model
 - Sensor connects to the IDC and sends data using TCP
 - If the TCP connection breaks, the sensor starts from the last sent data when a new connection is established
- Framing
 - Data sent as timestamped frames using compression
 - Data format negotiated at initiation of connection
- Forwarding
 - Data stored in database and then sent out to any additional receivers

Data Reliability and Scalability

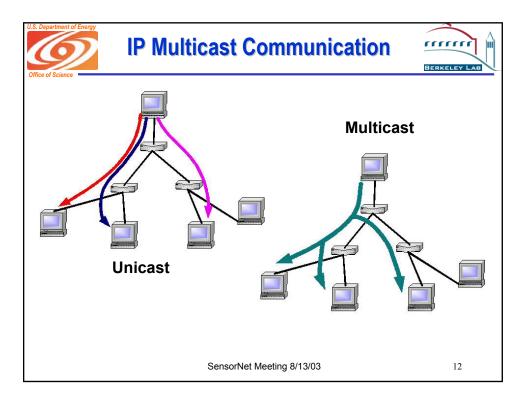
- Data forwarding operations are not reliable
 - With forwarding, if any site in the forwarding chain is down then none of the subsequent sites get the data
 - Hard to reconfigure data paths to move to an alternate primary receiver site
- TCP some problems on high bandwidth delay product links
- No method of requesting corrupted frames
- Difficult to retrieve particular segments of data from storage

SensorNet Meeting 8/13/03

Ç

What is Group Communication?

- Group communication mechanism
 - Provides one-to-many and many-to-many communication
- Efficient dissemination of messages
 - Network-based duplication (when needed)
 - Targeted retransmissions
 - Bandwidth savings
 - Parallel delivery at multiple locations



Group Communication

- Properties similar to TCP
- Application-level program (runs on end systems)
- Uses IP Multicast as the underlying communication mechanism
- Reliable and ordered delivery of messages within a group (negative acknowledgments and retransmissions)
- Tracks group membership

SensorNet Meeting 8/13/03

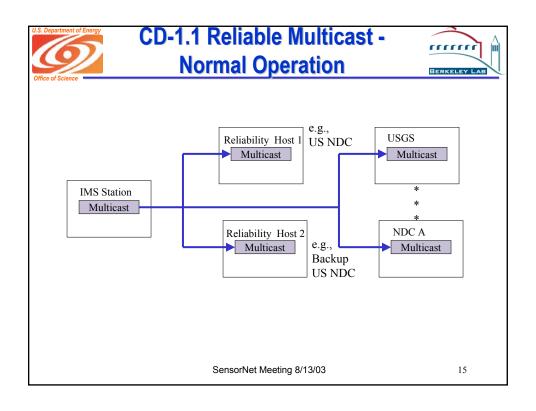
Internet Protocol (IP) Multicast

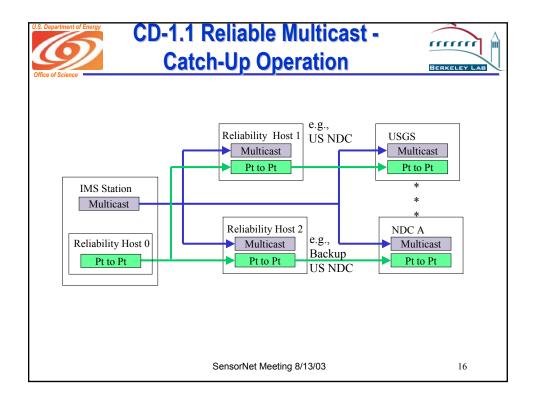
- Efficient group communication mechanism
 - provides one-to-many communication
 - Best-effort delivery to the group members (unreliable)
- Implemented in the network routers and hosts
 - Class D addresses used for multicast (224.x.x.x 239.x.x.x)
 - Network components manage routing and duplicate the message as needed
 - Co-exists with TCP and UDP communication mechanisms

SensorNet Meeting 8/13/03

13

CD-1.1 Multicast Capability


Motivation


- efficient transmission of data to multiple sites
- reliability (not dependent on a single data forwarding site)
- allow as-needed use of multicast

Designed and implemented by SAIC

- data provider multicasts data and provides retransmissions
- reliability host requests any required catch-up from data provider (unicast)
- reliability host responsible for catch-up of data consumers (unicast)
- easy to use either unicast or multicast

SensorNet Meeting 8/13/03

CD-1.1 (latest version)

Connections

- Unicast TCP and UDP
- Multicast reliable and unreliable

Push and pull model

- Unicast still uses push
- Multicast uses pull

Reliability

- Retransmission requests for missing frames (frame cache)
- Begin transmission with a short look back

Format

- Data format information included in each frame
- Authentication and data integrity
 - Frames are signed at the sensor using PKI

Authorization

Access control lists

SensorNet Meeting 8/13/03

17

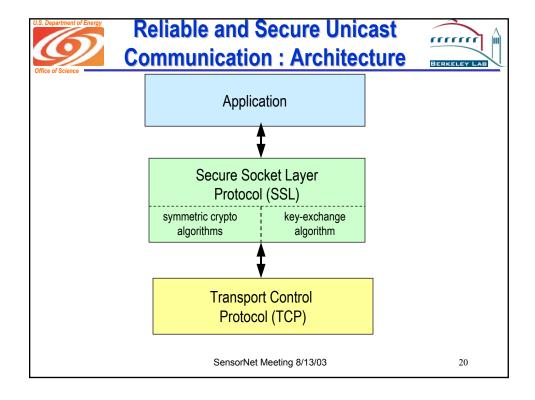
Sensornet vs CTBT

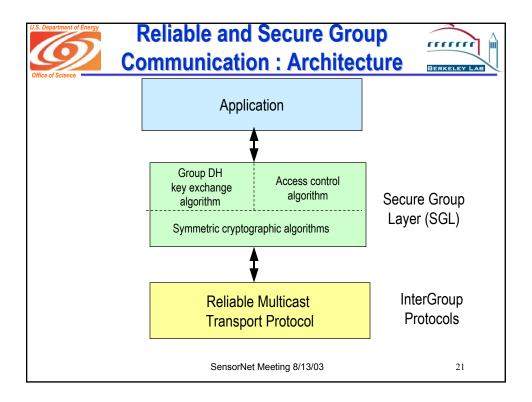
CTBT

- data integrity and authenticity is a primary concern
- data sent unencrypted and signed
- privacy of analysis products important
- sensors well-known in advance
- politics often dominate design decisions

SensorNet

- cell towers
- uplinks serve multiple types of sensors
- sensors co-located with minimal infrastructure
- encryption of data




Group Communication Research at LBNL

- Provide an efficient and reliable communication between participants aggregated into groups
 - communication channel directly connecting the participants (no intermediary server)
 - remove dependence on centralized servers (bottleneck, scalability)
 - support participants spread across the Internet
 - support self-organization/self-discovery
 - continue despite network partitions and failures
- Provide secure communication among the participants
 - support confidentiality, authenticity, and integrity
 - support access control based on certificates and passwords

SensorNet Meeting 8/13/03

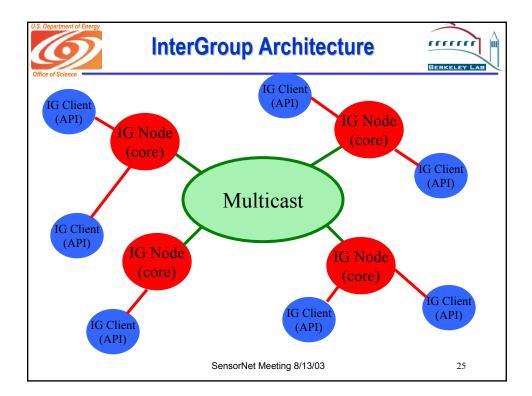
InterGroup Protocol

- All members of the group can send messages to the group
- All processes in the group receive the messages sent within the group
- Membership tracking with notification of membership changes
- Messages delivered to each member of the group in a consistent order
 - total order (timestamp)
 - preserve causality
 - membership changes ordered with respect to messages

InterGroup Scaling

- Split group into a sender and a receiver group
 - sender group membership
 - processes are in the sender group only while transmitting messages
 - strictly maintained
 - very dynamic (small and fast)
 - receiver group membership
 - semi-anonymous (hierarchical structure)
 - not strictly maintained (RTCP-like)
 - used for retransmissions and garbage collection
 - proxy send for low frequency senders

SensorNet Meeting 8/13/03


23

InterGroup Design

- InterGroup node (currently written in Java)
 - core InterGroup capabilities
 - automatically handles membership, message ordering and retransmission of missed messages
 - uses IP Multicast to transmit messages
- InterGroup client API
 - library that connects applications to an InterGroup node
 - locally using unix sockets
 - remotely using TCP
 - TCP connection allows machines without multicast connectivity to participate in InterGroup
 - easy to port to other programming languages

Implementation

Current release v1.5

- IG Node (Java)
 - deamon listening for client connections
 - all processes in the sender group
 - flow/congestion control very crude
 - reliable group ordered delivery
- IG Client (Java, C++, Python)
 - connects to IG node using TCP
 - C++ client for Unix flavors
 - ⇒ Windows client prototype available
 - Python client is prototype
 - ⇒ SWIG wrapping of the C++ client
- Berket et al., A Practical Approach to the InterGroup Protocols", J. of Future Generation Computer Systems, 2002

The Secure Group Layer: SGL

- A group Diffie-Hellman key exchange algorithm enables group members to establish a session key
- Symmetric crypto algorithms (e.g. DES and HMAC)
 - implements a secure channel
- An access control mechanism makes sure that only the legitimate parties have access to the session key
 - certificate-based
 - password-based
- Provable security

SensorNet Meeting 8/13/03

27

Model of Communication

- A multicast group consisting of a set of n players
 - each player holds a long-lived key (LL)
 - long-lived keys are either a password or a public/private key pair (i.e. PKI)

 g, g^{x_I}

 LL_2

Multicast Group

 LL_3

 $sk=H(g^{x_1x_2x_3})$

 $g^{x_2x_3}, g^{x_1x_3}$

SensorNet Meeting 8/13/03

Key Agreement Algorithms

Support

- Authentication
 - Password
 - Certificate
 - Anonymous
- Dynamic membership changes
- Low power devices

Security goals

- Forward secrecy
- Mutual authentication
- Secure against dictionary attacks

Provable security

Chevassut et al., The Group Diffie-Hellman Problems, Proc of Selected Area in Cryptography, 2002

SensorNet Meeting 8/13/03

29

Implementation

- Built in C++
- Framework and interface designed
- Static anonymous and password key exchange prototype implementations complete
- Crypto algorithms implemented for static and dynamic key exchange
- Demonstration chat application implemented
- Agarwal et al., An Integrated Solution for Secure Group Communication in Wide-Area Networks, Proc of IEEE Symposium on Computers and Communication'01

Group Communication in SensorNet

- Sensor data reaches multiple receivers with a single transmission (fault tolerance)
- Allows dynamic ad hoc configuration/addition of new sites
- Scalable to large number of sites/groups/latencies
- Security
 - distributed key agreement
 - password/certificate/anonymous authentication
 - algorithms for low power devices

SensorNet Meeting 8/13/03

31

Incremental Trust Motivation

- Ability to access from anywhere including Internet cafés
- Low threshold for entry into the system
 - Incorporate new users easily
 - Small amount of software downloads
 - No waiting for authorization to enter the system
- Components able to require only the level of authentication and authorization they need. E.g.
 - Weak or no authentication to enter the lobby
 - Strong authentication and authorization for sensitive actions
- Minimize dependence on servers (particularly while the collaboration is small in number)

Authentication Model

- A user has multiple means of authentication
- Authentication for a particular session based on
 - Location
 - Methods available
 - Security of local machine
 - Availability of connection to servers
- Authentication method for a session a property of a user's session
- Authentication method considered in authorization

SensorNet Meeting 8/13/03

33

Crossing the borders

Escort

- Chaperone a user in an area they are not normally authorized to access
- Only provides privileges of the host or less
- Host able to control the guest's access

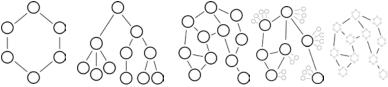
Vouching

- A user vouches for a less privileged user
- Temporarily elevates privileges of the vouchee
- Vouchee able to act without escort

Incremental Trust and SensorNet

- Allow you to support devices and sites with varying levels of trust
- Developing for collaboratories
- Allow multiple authentication methods
- Quickly provide a means of access for new or temporary users
- Recognize in the system that there are different access authorization levels

SensorNet Meeting 8/13/03


35

Peer-to-Peer I/O (P2PIO)

- Find, access and aggregate information/resources
 - in a large distributed system
 - composed of many autonomous data sources
 - dynamic and heterogeneous information, resources, participants, network

- Example Query
 - "Find sensor data X in the D.C. area and subscribe to updates on changes to the sensor data"

P2PIO Features

- Query searches for all items matching a set of criteria
- Provide a means of incrementally searching through a network
 - Iterative access to the result set
 - Can request single or multiple message response to a receive
- Transport independent
- Variety of response mechanisms

SensorNet Meeting 8/13/03

37

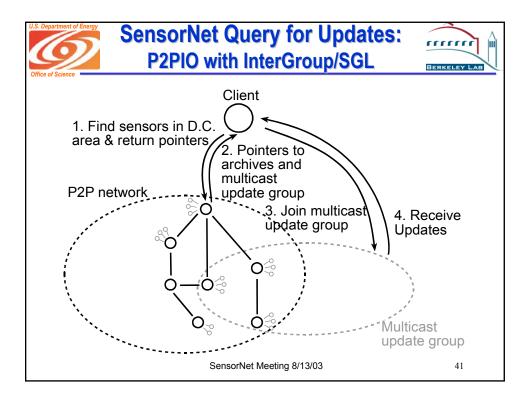
General Purpose P2PIO Infrastructure

- Data independent
 - Any structured or semi-structured XML data
 - Integrate static data from relational or XML database
 - Integrate dynamic data generated on-the-fly
- Query language independent
 - Allows for XQuery, XPath, SQL, custom query languages
- Network and Transport independent
 - E.g. TCP, Web Service/SOAP, InterGroup/SGL
 - Arbitrary topologies (allows for hybrid system of systems)
- Fault-tolerant, scalable, interoperable
- Easy-to-use and deploy, easy to extend and customize
- App developers focus on app-specific problems (plug-in)

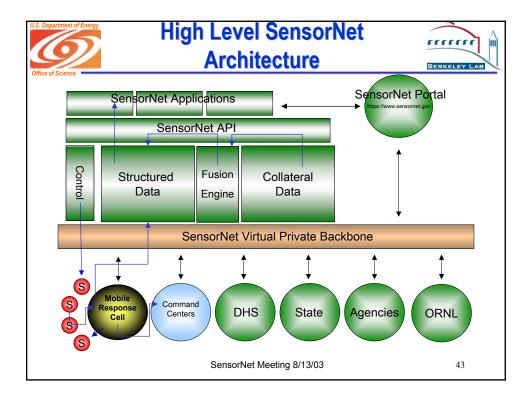
P2PIO Status

- Early version of specification
- Proof-of-concept implementation
 - SOAP-based messaging
 - Accessible as a Grid Service
 - Network support
 - Static implemented
 - Dynamic unicast P2P and InterGroup/SGL in development
 - XQuery and XPath plugins built-in

SensorNet Meeting 8/13/03


39

SensorNet Query for Updates: P2PIO with InterGroup/SGL



- Client asks for specific sensor information in area of interest and asks for updates
- Local aggregators in charge of number of sensors
- Aggregators are peers in P2PIO and for each query with matching result(s) answer with
 - Pointers to archives of the sensor data
 - Allows access to past data
 - Pointer to SGL group where sensor updates are sent
 - Allows all to receive new data

- SensorNet Characteristics (from brief)
 - A System of Systems Infrastructure
 - Real Time Knowledge/Near Real Time Response
 - Integration Of Many Dissimilar Sensor Systems
 - Scalability To Cover The North American Continent and Hawaii.
 - Peer-To-Peer and Conferencing Framework
 - Near-Simultaneous, Interactive Availability to Data and Services
 - High Reliability
 - Self-Organizing/Self-Healing Network Connectivity
 - Distributed Processing
 - Distributed Information Storage
 - Information Assurance
 - Encrypted Communication
 - Trust Architecture
 - ⇒ Multi-Level Security
 - \Rightarrow Access Control
 - Fusion Of Information Into A Common Operational Data Base and Picture.

Further Information

- LBNL URLs
 - http://www-itg.lbl.gov/
 - http://www-itg.lbl.gov/CIF/GroupCom/
 - http://www-itg.lbl.gov/P2P/file-share/
- LBNL Contacts
 - DAAgarwal@lbl.gov
 - KBerket@lbl.gov
 - WHoschek@lbl.gov
 - OChevassut@lbl.gov
- CTBTO PrepCom WWW site
 - http://www.ctbto.org/